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A orifice radius

Ea activation energy (cal/mole)

K Clausing factor 

L orifice length

R gas constant, 8.3144 kJ/mole-K; 1.9872 cal/K/mole

r2 linear regression coefficient

R1 deposition rate measured at T1 (moles/cm2-s)

R2 deposition rate measured at T2 (moles/cm2-s)

T surface temperature (K)

T1 lower effusion cell temperature (K)

T 2 higher effusion cell temperature (K)
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τo vibration frequency (vibrations/s)



1

TECHNICAL MEMORANDUM 
 
 

QUARTZ CRYSTAL MICROBALANCE OPERATION AND IN SITU CALIBRATION  
 
 

1.  INTRODUCTION

Quartz crystal microbalances (QCMs) are commonly used to measure the rate of deposition  
of molecular species on a surface. The usual process is that the deposition rate for a specific material  
is measured and then mathematically modified to calculate a source term, or outgassing rate, for the  
material. The source term, which is representative of the material’s outgassing rate, can be used as  
input for computer programs that predict the rate of deposition of the emitted or outgassed material  
on another surface. 

The outgassing process is diffusion controlled, and the rate of release, or outgassing, is tem-
perature dependant. Outgassing measurements are not typically used to measure the release of material 
due to degradation of the parent material or the material generated by the chemical interactions of the 
released compounds that result in the production and deposition of a different chemical species. 

The deposition process is temperature dependant with the efficiency of the condensation process 
increasing as the deposition surface temperature becomes increasingly colder than the temperature of the 
outgassing material.

The species, molecular or atomic, released from a material during the outgassing process are 
typically quantified and described in two ways: (1) The total amount of material that is lost through  
the outgassing process is often referred to as the total mass loss for the material, and (2) material 
released during the outgassing process that will recondense on another surface is often identified as 
volatile condensable material (VCM). Both quantities can be expressed as a percentage of the original 
sample mass, but only VCM can also be expressed as an outgassing rate when measured with an instru-
ment such as a QCM.
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2.  QUARTZ CRYSTAL MICROBALANCE TYPES

QCMs typically fall into two major categories and three subcategories. QCMs either have a sin-
gle quartz crystal or a matched pair of quartz crystals, forming a clear distinction between the two major 
classes of QCMs. This Technical Memorandum (TM) will only address the QCMs that have a matched 
pair of quartz crystals. One of the crystals serves as a reference oscillator while the deposition of VCMs 
occurs on the surface of the other quartz crystal. This class of microbalances can be further subdivided 
into the following:

• QCMs: These microbalances do not have an active mechanism to control the temperature of  
 the deposition surface. Heating and cooling of the microbalance is typically done by control- 
 ling the temperature of the structure on which the QCM is mounted. These are the simplest  
 of the QCMs that have a matched pair of crystals.

• Temperature-controlled QCMs: The temperature of the quartz crystals in these balances is  
 actively controlled. Both cooling and heating is controlled, often by building a Peltier device,  
 a solid state heater/cooler, into the balance.

• Cryogenic QCMs (CQCMs): These microbalances can actively heat the crystal pair, but they  
 rely on passive cooling to control the temperature of the deposition surface. Cryogenic deposition  
 surface temperatures are passively achieved by mounting this microbalance on a cryogen-cooled,  
 typically liquid nitrogen, surface.

Throughout the remainder of this TM, the initialism QCM will be used as the generic label  
for all three types of QCM.
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3.  MODIFICATION OF THE MEASURED DEPOSITION RATE

The measured deposition rate is simply a measurement of how fast the outgassed materials con-
dense on the deposition surface of the QCM. The difference in oscillation of the reference crystal and 
the crystal on which material deposits is often referred to as the beat frequency. Using a sensitivity fac-
tor specific to the type of QCM being used, the measured change in frequency can be converted into a 
deposition rate. The sensitivity factor is normally provided by the QCM vendor. The deposition rate is 
typically reported in units of grams per centimeter squared-second and is calculated from the observed 
change in the beat frequency with time (ΔHz/s).

The source term, or outgassing rate, for a material is normally different than the measured depo-
sition rate and is arrived at mathematically. The calculation involves a view factor (VF) and is further 
modified by the sample surface area. 

The view factor is a mathematical description of the geometry between the emitting surface, the 
outgassing source, and the deposition surface. If the measurement system employs an effusion cell for 
heating the sample, then the length and radius of the effusion cell orifice along with the sample surface 
area must also be considered in the calculation. An additional factor, the Clausing factor, that quantifies 
the conductance of the orifice (app. A) must also be incorporated into the VF calculation.1

For the measurements appearing in this TM, the VF calculation presented in American Society 
for Testing and Materials (ASTM) method E–1559 has been used to calculate the reported source terms.2 
The ASTM method E–1559 VF is not the only VF calculation employed for the calculation of source 
terms. The ASTM E–1559 VF method is specific to measurements in which the sample is heated in an 
effusion cell and should not be used to calculate surface-to-surface VFs.3

3.1  Dynamic Deposition Process

A simple assumption often made is that the material being deposited on a surface remains on  
the surface and that all the condensed species have the same affinity for the deposition surface. This  
is often not the case, and some deposited material may be lost, or reevaporated, from the deposition  
surface while the majority of the condensate remains on the deposition surface. Often, the sticking  
coefficient or factor for a material is set at 1 to simplify the measurement and modeling of the deposi-
tion process. 

Cooling the outgassing source below the temperature of the deposition surface, effectively turn-
ing off the outgassing source, often reveals a slow loss of material from the deposition surface. Reevapo-
ration usually occurs at a significantly lower rate than the measured deposition rate and varies with the 
deposition surface temperature and composition.
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The dwell time of a molecular species on a surface can be calculated if all the required parame-
ters are obtained from laboratory measurements or published references (app. B). However, this level  
of precision is not needed for the typical applications that the outgassing rate measurements are intended 
to support.
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4.  VERIFICATION OF SOURCE-SENSOR RELATIONSHIP

When multiple QCMs are used to measure the outgassing from a common source, the VF for 
each sensor will be unique to the geometry between the source and the sensor. In some systems employ-
ing multiple sensors, a common geometry is used by design, and all the sensors have a common VF.  
The assumption of a common geometry can be confirmed by comparing the deposition rates that are 
measured by the sensors while viewing the same outgassing source. For this technique to be effective, 
the deposition surfaces of the sensors must all be at the same temperature and the sample/QCM geom-
etries must be uniform. Figures 1 and 2 are frequency curves for four CQCMs viewing an effusion cell 
(fig. 3) containing a sample of adipic acid (Chemical Abstracts Service Registry Number: 124–04–9). 
The slopes for the curves presented in table 1 were obtained from a linear regression analysis of the  
individual frequency curves. 

CQCM 1

CQCM 3

CQCM 2

CQCM 4
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Figure 1.  Four CQCMs with a common outgassing source-to-sensor geometry. 
 During the first 2 hr of the measurement, two of the CQCMs were 
 warmed from –100 to – 62 ºC, and this period was not included in the plot.
 (Adipic acid, January 27, 2004: –62 ºC deposition surface, 55 ºC effusion 
 cell—from 2 to 24.50556 hr.)
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Figure 2.  Another example of multiple CQCMs with a common source-to-sensor 
 geometry. (Adipic acid, June 30, 2003: –42 ºC deposition surface, 41 ºC 
 effusion cell—from zero to 16.25 hr.)

Figure 3.  The four CQCMs used to collect the data presented in figures 1 and 2 as they 
 are mounted in the vacuum chamber. The effusion cell, in which the sample 
 is heated, would be mounted on the bracket in the foreground.
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Table 1.  Frequency data for multiple sensors with a common source-to-sensor geometry.

QCM

Effusion Cell
Temperature 

(ºC)

Deposition 
Surface

Temperature 
(ºC)

Frequency 
(Hz/hr)

Regression 
Coefficient

January 2004

CQCM 1
CQCM 2
CQCM 3
CQCM 4

55
55
55
55

–62
–62
–62
–62

31.99
33.904
36.464
33.581

0.9998
1
0.9999
0.9998

June 2003

CQCM 1
CQCM 2
CQCM 3
CQCM 4

42
42
42
42

–42
–42
–42
–42

4.0657
4.2807
5.2736
3.5931

0.9978
0.9977
0.9963
0.9901

In each instance, perfect agreement between the slopes of the curves was not obtained, suggest-
ing a bias of the common geometry to one of the sensors. The amount of bias that is acceptable for the 
measurement being made should be taken into account when determining if further modifications to the 
measurement setup are required or if the measurement setup is adequate to meet the requirements for the 
accuracy of the data. The performance of the individual sensors can have a large influence on the per-
ceived bias and should also be addressed in the evaluation of a multisensor system.
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5.  INDIVIDUAL SENSOR PERFORMANCE

The quality of the measurement made with each individual QCM can be assessed using deposi-
tion measurements made with the QCM to calculate the enthalpy of sublimation for a known condensate 
species.4 A series of deposition measurements is made at a constant deposition surface temperature and 
several source temperatures. The quality of the individual deposition measurements is then assessed 
using a linear regression analysis of the data to establish the quality of the data and to obtain the slope  
of the frequency curve. The slope is usually measured in hertz per hour (Hz/hr) and, using the QCM sen-
sitivity factor, converted to a deposition rate, g/cm2-s. The deposition rate is then converted to a source 
term, which is stated in moles/cm2-s.

The material selected for the measurements must sublime as a single species and cannot degrade 
during the outgassing/deposition process.5 Values for the enthalpy of sublimation and the molecular 
weight and melting point of the material can be obtained from various chemical references.6–8 Melting 
the material is undesirable and will produce erroneous results if the enthalpy of sublimation is calculated 
using data obtained from a melted sample. 

Using the source terms measured for two different effusion cell temperatures, the enthalpy  
of sublimation for the material can be calculated using the van’t Hoff relation:9 

 Enthalpy of sublimation=R[T2–T1/T2×T1]× ln[R1/R2]   , (1)

where 

 R is 8.3144 kJ/mole-K, the gas constant
 T1 is the lower effusion cell temperature (K)
 T 2 is the higher effusion cell temperature (K)
 R1 is the deposition rate measured at T1 (moles/cm2-s)
 R2 is the deposition rate measured at T2 (moles/cm2-s). 

To illustrate the process, the enthalpy of sublimation for adipic acid, 129.3±2.5 kJ-mole–1, has been cal-
culated and is presented in table 2.8  

Exact agreement between the calculated enthalpy of sublimation and published values may not 
always be achieved, and a decision on the accuracy needed for the measurements will have to be made 
by those making the measurement. Often the published values for the enthalpy of sublimation will be a 
value plus or minus some uncertainty, which makes exact agreement between the calculated and those 
published values even more difficult to achieve (app. C). The objective is to show that the data collected 
with each QCM as an indicator of QCM performance are accurate and reasonable over a range of source 
temperatures. 
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Table 2.  Enthalpy of sublimation calculated from adipic acid deposition measurements.

CQCM
No.

Deposition Surface 
Temperature (ºC)

T1
(ºC)

T2
(ºC)

R1
(moles/cm2-s)

R2
(moles/cm2-s)

Enthalpy of
Sublimation (%)

1
1
1
1

 –62
 –62
 –62
 –62

33
37
40
44

55
55
55
55

1.9×10–11

3.47×10–11

6.26×10–11

9.67×10–11

5.2×10–10

5.2×10–10

5.2×10–10

5.2×10–10

97.3
98.7
93.5

102.7

2
2
2
2

 –62
 –62
 –62
 –62

33
37
44
50

55
55
55
55

2.14×10–11

3.72×10–11

1.01×10–10

2.8×10–10

5.45×10–10

5.45×10–10

5.45×10–10

5.45×10–10

95.3
97.6

102.3
91

3
3
3
3

 –102
 –102
 –102
 –102

33
37
44
33

55
55
55
50

2.5×10–11

3.98×10–11

1.28×10–10

2.5×10–11

7.11×10–10

7.11×10–10

7.11×10–10

4.39×10–10

98.6
105
104.6
107.5
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6.  MEASUREMENT DURATION

The number of the data points collected during each deposition measurement should lend itself  
to good statistical analysis. Data collection intervals of 5 to 300 s over a period of 10 hr or more will 
provide an adequate amount of data with good resolution for deposition calculations (fig. 4). In addition, 
the random QCM frequency data variations from fluctuations in the sample temperature, small variations 
in the deposition surface temperature, and disturbances from cryo-panel fill cycles will have  
a less pronounced effect when data are collected for reasonably long periods (fig. 5).

Time (hr)

Fr
eq

ue
nc

y 
(H

z)

0 5 10 15 20 25 30 35 40 45

600

500

400

300

200

100

0

y=6.5341x+270.84
r2=0.9998

Figure 4.  Linear regression analysis of frequency data collected with a CQCM. The slope 
 for the curve is x-value multiplier (6.5341 Hz/hr) and the r 2 value (0.9998) 
 is the linear regression coefficient. (Adipic acid, CQCM 2, January 24, 2004: 
 –62 ºC deposition surface, 44 ºC effusion cell.)

Linear regression analysis is a good method for the evaluation of frequency data. It provides  
the slope of the frequency curve in addition to a linear regression coefficient. Typically, data with a cor-
relation coefficient > 0.99 are of high enough quality to produce good deposition data and are adequate 
for the accurate calculation of the enthalpy of sublimation. 
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Figure 5.  Time period from 10 to 10.5 hr of the frequency data presented in figure 4. 
 The fluctuation in the frequency data primarily comes from fluctuations in 
 the effusion cell heater temperature and a slight fluctuation in the deposition 
 surface temperature. (Adipic acid, CQCM 2, January 24, 2004: –62 ºC deposition 
 surface, 44 ºC effusion cell—from 10 to 10.5 hr.)
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7.  DEPOSITION SURFACE REGENERATION

The typical beat frequency observed for a clean QCM crystal pair will fall between 500 and 
2,000 Hz. Condensation of material on the QCM crystal will cause a linear increase in the beat fre-
quency until the deposition of material on the crystal begins to degrade the measurement being made.  
As a guideline for the user, the capacity—a maximum frequency value or microbalance loading—of 
each QCM is typically provided by the vendor. The deposition surface can be regenerated by raising 
the temperature of the crystal pair, thereby thermally reversing the deposition process. At the end of the 
crystal cleaning process, some historeses, or residual mass, which will be observed as a slight increase  
in the baseline frequency when the crystal is cooled, may remain on the crystal.

Not all QCMs measure the deposition process as an increase in the beat frequency. Some QCMs 
measure the increase in deposited material as a decrease in the measured beat frequency. Either approach 
to the deposition measurement process is acceptable as long as the frequency change observed is consis-
tent with the proper functioning of the QCM.
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8.  CONCLUSION

QCMs are widely used by the aerospace community, as well as other communities interested  
in the rate at which material condenses on contamination-sensitive surfaces, to measure deposition  
rates. Simple methods can be employed to evaluate the relation between the sensor and the source  
of the condensing species. The in situ assessment of individual QCM performance can be made using 
physical constants such as the enthalpy of sublimation, which is available in chemical handbooks and 
other references. 

This TM describes the calibration of QCMs installed in the Marshall Space Flight Center Out-
gassing Facility, which is operated by the Environmental Effects Group (ED31). The deposition rate 
measurements for a substance that sublimes as a single molecular species demonstrated that the facility 
provides quality outgassing measurements and that the microbalances can be monitored for both perfor-
mance and sensitivity. The techniques presented in this TM are also recommended for the in situ calibra-
tion of QCMs installed in other vacuum chambers. 
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APPENDIX A—CALCULATION OF THE CLAUSING FACTOR FOR AN ORIFICE 
 OR SHORT TUBE

The Clausing factor, K, is a unitless number that describes the conductance of material through 
short tubes or the orifice of an effusion cell. This factor was developed by Clausing, and a good descrip-
tion of the factor and the theoretical background for the calculation can be found in Dushman:1

 K=1/[1+(3/8)(L /A) ]   , (2)

where L is the orifice length and A is the orifice radius.
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APPENDIX B—CALCULATION OF THE DWELL TIME OF CONTAMINANTS 
 ON SURFACES

Surface dwell time, τ (s), for a contaminant can be calculated if the vibration frequency  
of the species, the activation energy of the species, and the temperature of the surface are known:

 τ =τo  exp(Ea /RT )   ,  (3)

where 
 τo is the vibration frequency (vibrations/s)
 Ea is the activation energy (cal/mole)
 R is the gas constant (1.9872 cal/K/mole)
 T is the surface temperature (K).

The activation energy and characteristic vibration frequency of a molecule or atom for a species 
can be obtained from publications, chemical handbooks and databases, or measurements made in the 
laboratory.8
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APPENDIX C—NOTES ON USING THE VAN’T HOFFT RELATION TO CALCULATE 
 THE ENTHALPY OF SUBLIMATION

Screening the measured frequency data using linear regression can quickly eliminate poor quality 
data and help guide the measurement process before attempting to calculate the enthalpy of sublimation. 
A range of acceptable error in the calculated enthalpy of sublimation; e.g., ±10 percent, should be identi-
fied as providing measurements with the accuracy required for the application that the measurements  
are intended to support. 

The efficiency of the deposition process increases as the deposition surface temperature becomes 
increasingly colder than the source temperature. The data collected for the hottest source temperature 
and not eliminated by the linear regression screening process would be a good candidate to select as one 
of the two data sets needed for the enthalpy of sublimation calculation. This data set can be considered 
to be an informal reference point for the exercise, against which the data collected at other source tem-
peratures can be evaluated. 

The apparent error or disagreement between the calculated enthalpy of sublimation and the pub-
lished value can become very large when using data collected at two very similar source temperatures, 
typically a difference of <5 ºC. Some of the error is from instabilities in the sample heater, instabilities  
in the temperature of the deposition surface, and the fill cycles of the cryogenic surfaces. Repeating  
the calculation and substituting a deposition rate measured at a slightly higher or lower source tempera-
ture than the previously selected, informal reference may reduce the error.

Once the enthalpy of sublimation has been calculated for a range of source temperatures,  
the agreement or disagreement in the calculated values can be used to evaluate the performance  
of the microbalance. 
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